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Abstract. In this paper a new method for estimating the value of an improper 
integral by a finite sum is introduced. In particular, the method is applied to the 
Chi-Square integral and proves to be of some value in estimating the value of this 
integral for values equal or greater than .9. I 

I. Introduction. The problem of computing the area, Q(X21v), under the right 
tail of a chi-square distribution is quite important and occurs often in applications. 
For an even number, v, of degrees of freedom, the computation of Q(X21v) is straight- 
forward (although quite lengthy if v is large). For v not an even integer, one must 
use an approximation such as asymptotic or series expansion, normal approximation, 
or numerical integration. It is well known that most relevant series expansions [1], 
[5] converge very slowly, often requiring a large number of terms in order to be 
accurate to only a few significant digits. If only a few significant digits are needed, 
one can use an asymptotic expansion, but the number of terms used in the series is 
a function of x2 and v; i.e., an approximation using a fixed number of terms from an 
asymptotic expansion generally has an acceptable accuracy over a limited range of 
values for x2 and v. 

In this paper a simple approximation for Q(X2Iv) is developed, and in the process, 
some new methods for developing approximations are presented. The approximation 
given here is quite useful for computation on digital computers and for hand calcula- 
tions when only 3 to 4D accuracy is needed and if Q(X21 v) ? .1. 

II. Definitions and Theorems. Let 

(1) 'y(a, z) = J e-zxldx , z-1 > -1 

Then 

(2) Q(X2V) r(v/2) v 
rP(v/2) 

For convenience, let 2u= 2 and 2v=v. Then Q(X21V)=Q(2uI2v) =y(u, v)/r(v). 
The approximation we shall derive here uses an approximation for -y(a, z) and 

the truncated Stirling's approximation [1], 

(3) r(z) ?_ ezZzl /2(2,r)l12[1 + 1/12z] 

In order to derive the approximation for -y(a, z), the following definitions and 
theorems are given. For motivation of these definitions see [2], [3], [4]. 

Definition 1. Iff E C(1) on [a, oc) and 
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F(t,a)= f(x)dx-L i oo ast - o, 

then 

(4) H[F; t, a] F(t, a) - f2(t)/f'(t) , f'(t) 5=O 0 
Definition 2. Let A (t) and B(t) be functions of a real variable t such that A (t) 
A o and B(t) > Bo as t - oo. A (t) is said to converge more rapidly than B(t) if 

(5) lim (Ao - A(t))/(Bo - B(t)) = 0. 
t--oo 

THEOREM 1. If limt,. f(t) and limt,. f(t)/f'(t) exist and the latter is not zero, 
then H[F; t, a] converges more rapidly than F(t, a) to L. 

Proof. Let 

(6) lim f(t)/f'(t) = b ? 0, 
t -* 0 

then 

lim L-HF[;t, a] = + lim f(t) f(t) 
(7) ~ t-+0 L - F (t, a) t-*o+ '(t L -' F (t, a) 

-1+blim ~f (t) 
+ g o0 L-F(t) b 

by L'Hospital's rule. If we let f(x) = e-x xz-1, z > 0, then 

(8) H[F; t, a] = texzld+ ex t 
a t - z +1 

- z-)x z-1 6-a az (9) - 

--1 
ea 

(x -a + 1)2 a-z+z + 

Note that in (9) the second term is independent of t and that the integrand in 
(9) is positive and less than the integrand in (8), when x > z - 1 + (z - 1)1/2. Since 
(9) converges to the same limit as F(t, a), i.e., ty(a, z), as t -* oo, we can see that for 
sufficiently large a the integral in (9) does not contribute as much to the limit as 
does F(t, a). Further, we see that the H transform can be reapplied to the integral 
in (9) to further increase the speed of convergence. If the integrand is again reduced, 
then again the resulting integral will contribute less to the desired limit than the 
previous integral. If this process can be repeated indefinitely, then one may generate 
a series, dependent only on a, which converges to the desired limit and which in- 
volves no integration. This is the motivation for the following definition and theo- 
rems. 

Definition 3. Let A and B be operators defined by 

(10) A f(t)] = fl (t) /f'(t) 

and 

(11 ) B[f(t)] = f(t) -D A [f(t)] 

Then we define Hn[F; t, a] by 
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n-1 

(12) H LF; t, a] = F (t, a) - E ABjrf(t)]I 
j=0 

where Bi refers to B applied j times and ABO = A. An alternate form for (12) is ob- 
tained by noting that 

ft n-1 n-1 

(13) ] Bn[f (x)]dx = F(t, a) + E AB'[f(a)] - E ABj[f(t)], 
a j--O j=O 

which leads to 
n-1 /t 

Hn[F; t, a] =- : ABj[f (a)] + J Bn(f(x))ax. j=Oa 
THEOREM 2. If 

ABkf(t) * 0 as t > co, k =,1, ***,n-1, 

then 

(14) limI H[F; t, a] = L. 

Proof. The proof follows immediately from (12). 

THEOREM 3. If 

(15) lim f B n(f(t))dt = 0 
n--oo a 

and 

(16) lim ABk(f(t)) =0, k = 0, 1, * *, 
t- oo 

then 

rOo 00 

(17) f (x)dx = - ABj(f (a)). a j=o 

Proof. The proof follows immediately from (13). 
Theorems 2 and 3 indicate that under certain conditions the repeated application 

of H will, in fact, produce a series which converges to the desired limit. This im- 
mediately suggests that the terms of the series derived after n applications of the 
H transform may be a good approximation for the original improper integral. If the 
approximation is good for small n, then the method may produce a worthwhile 
approximation function. This is, in fact, the case for ty(a, z). 

III. Derivation of the Approximation. Let f(t) = e-ttz-1 and 

n 
(18) 'Yn(a, z) = - ABjf (a) 

j=O 

Then, letting p = a - z + 1, 

(19) yo(a, z) = e-aaz/p 

(20) yi(a, z) = e (- +2) 
P \p+2a 
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e--aa z 
7(2(a, z) =-ea _ I 2a 

+~~~ (zl[(-) 2+ 2a] (21) P p 2 
+(2 + 2)( )6(Z - 1)[ (Z - 1)p2 + 2a 212 - 

p(p2 + 2a)[(z-l1)p - 2ap5 + 4a(z - 2)p4 + 8a2p3 16a 3p2 8a 4]/ 

As can be seen, the calculation of further terms becomes quite difficult. Because 
of its simplicity and because Y2 yields very little more accuracy than 'y' in the range 
of values of interest here, Q(2ul2v) _ 0.1, -y' is used in the approximation. Thus 

(22) Q(2u12v) - e - V 

prP(v) \\ p2 +2'u/ 

One difficulty inherent in many methods, including (22), of computing x2 proba- 
bilities is that the differences of the magnitudes of e-u, u2v, and r(v) are often ex- 
treme. One method of alleviating this problem and at the same time avoiding the 
calculation of r(v), is by use of (3), yielding the quantity 

(23) C(x2, v) = e;2 ()1 ( V- I 2V3/2 

where 2u = x2, 2v = v, and p = u - v + 1, as an approximation of Q(X2!V). It is 
this latter approximation that we will investigate further. 

TABLE 1 
Errors in C(X2, v) and Q3(X21 V) 

V Q C(X2) V) _ Q QC(X21%V) - Q 

1 .1 - .00105 .03035 
1 .05 - .00028 .00620 
1 .01 - .00002 .00029 
2 .1 .00010 .00010 
2 .05 .00005 .00005 
2 .01 .00001 .00001 
5 .1 .00054 .00010 
5 .05 .00013 .00001 
5 .01 .00000 .00000 

10 .1 .00058 -.00302 
10 .05 .00010 - .00107 
10 .01 .00000 - .00011 
30 .1 .00038 -.02007 
30 .05 .00004 - .00811 
30 .01 - .00001 - .00109 

100 .1 .00007 - .04464 
100 .05 - .00022 - .01975 
100 .01 - .00004 - .00313 
250 .1 -.00001 -.06645 
250 .05 - .00033 - .02787 
250 .01 - .00006 - .00537 
500 .1 -.00018 -.06975 
500 .05 - .00043 - .03761 
500 .01 - .00007 - .00586 
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IV. Comparison with Other Estimators. In order to examine the accuracy of 
C(x2, v) as an approximation for Q(x2Iv), C(X2, v) was computed for v = 1, 2, 5, 10, 
20, 30, 100, 250, 500, using values of X2 which yield Q(X2Iv) -- 0.1, 0.05, and 0.01. 
The res;ults shown in Table 1 indicate that, except at v = 1 for Q(X21V) = 0.1, 
C(X2, v) is accurate to at least 3D. 

For the sake of comparison, consider the series expansion for Q(x2Iv), 

(X21Ve-X2(X2)(P/2)+l 
{ x2 (X2) 2} 

(24) Q(2)=1- 
e72x2(12? f 2 } 

rF((v +1)/2) )+v/2X+2+ (v/2 + 2) (v/2+3)+ 

as a method of estimating Q(X21V). 
Using (24), one can compute Q (X21 V) to any desired accuracy, but the number of 

terms required can be large; e.g., after 14 terms, (24) yields a less accurate estimate 
of Q(814) than does C(8, 4), while for v = 100 and x2 = 118.498, (24) is less accurate 
at 40 terms than is C(118.498,100). Another method of estimating Q(X2Iv) is by use 
of the asymptotic series. The problem of determining how many terms of an asymp- 
totic series to use in making an estimate of the value of a function is well known. In 
order to compare C(X2, v) with a truncated asymptotic series, the first three terms 
of the asymptotic series for Q(X21 v) were used in conjunction with (3), yielding 

(25) Q3(X21k) e (uV) + (v1 - 1) + (v - 1) (v - 2))( l2Vv ) 

(2x) 1/2 V 
u /2i2v + 

Q3(X21v) yields a good estimate of Q(X21v) and is of the same order of complexity as 
C(X2, v). As shown in Table 1, however, C(X2, v) generally yields a much better 
estimate than does Q3(X21 v). 
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